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Analog Simulation of a Simple System with 
State-Dependent Diffusion 
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We have constructed an electronic simulator of a simple bistable system driven 
by noise, whose intensity is determined by the instantaneous value of the coor- 
dinate. We observe that the most probable state of the system can be reversed 
by altering the noise intensity only in the neighborhood of the barrier, an effect 
pointed out by Landauer many years ago in the context of discussions on 
entropy-related stability criteria for nonequilibrium systems. We compare 
detailed measurements on the system with the recent white noise calculations of 
Landauer and van Kampen. The system also has interesting possibilities for 
tests of contemporary colored noise theory which we illustrate with an example. 

KEY WORDS:  Simulator; electronic circuit model analog simulator; relative 
stability; bistability; stability criteria; nonequilibrium systems; colored noise; 
colored noise theory; multiplicative noise; state-dependent diffusion; reversal of 
stability; discontinuous noise intensity; path-dependent noise. 

1. I N T R O D U C T I O N  

Many years ago Landauer raised the issue of the implications of state- 
dependent diffusion in the context of entropy generation and stability in 
nonequilibrium systems. ~1) His point was that the relative stability of a 
multistable system could be altered by path-dependent diffusion even when 
localized to the neighborhoods of the potential barriers separating the 
deterministically stable or metastable modes. That is, the most probable 
state of such a system cannot be determined from information about 
the local minima alone. Later it was observed that in certain models, 
state-dependent diffusion can even generate maxima in the probability 
distribution at locations where no potential minima exist. ~z) These early 
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studies gave rise to wide discussions which continue to be of current 
interest (see, e.g., ref. 3). 

The more general problem of diffusion in inhomogeneous media has 
recently been carefully analyzed by van Kampen. (4) State-dependent 
diffusion which is periodic and commensurate with a spatially periodic 
potential can give rise to continuous currents in the absence of externally 
applied fields. Such systems have recently been treated by Buttiker (5) and 
van Kampen (6~ as well as Landauer. (7~ 

In this paper we consider the simplest model for state-dependent 
diffusion in a bistable system as originally suggested. ~1) We take the 
standard quartic as the potential 

V(x)  = - x 2 / 2  + x4/4 + ex (la) 

with the dynamics being determined by the infinitely damped system 

2 = x -  x 3 + g ( x )  ~(t) - ~ (lb) 

where ~(t) is a Gaussian, white noise with zero mean and correlation 
( ~ ( t )  ~ ( s ) )  = 2 D , 6 ( t -  s); and where g(x )  is defined by 

g ( x ) - = l ,  for x < 0 o r x > l / 2  
(2) 

g(x )  = 1 + A, for 0 ~< x ~< 1/2 

The noise intensity is Dn and e controls the symmetry of the potential wells. 
This specific system has recently been analyzed by both van Kampen, <6) 
who, in a notably clear tutorial, derived the probability densities from 
thermodynamic arguments as well as from the diffusion equation, and by 
LandauerJ 7) 

The effect of the reversal of stability in this bistable system due to an 
increased temperature (larger D) in the neighborhood of the barrier is 
illustrated in Fig. 1. Though the illustration is schematic, the graphs are 
quantitative. On the left is shown U(x)  as given by Eq. (la) with e =0.05. 
On the right are shown the probability densities as measured on the 
simulator described in Section 3 below for increasing values of A. The effect 
of A in reversing the most probable state is clearly evident. 

This paper is organized as follows: In Section 2 the theory is briefly 
reviewed. Expressions for the ratio of the amplitudes of the stationary 
probability densities in the two wells and for the magnitudes of the discon- 
tinuities at the locations where the noise intensity is discontinuously 
changed are summarized. In Section 3 the simulator and the methods of 
measurement are described. The main results are presented in Section 4, 
where measurements of the amplitude ratio of the probability density and 
the magnitudes of the discontinuities are compared to the theory of refs. 6 
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Fig. 1. (Left) Potentials from Eq. (1) with e=0 .05  and (right) measured densities for 3 =0 ,  
0.45, and 1.3 (top to bottom), showing the reversal of the most probable state. 

and 7. In Section 5 we examine the colored noise problem and the 
possibility that this system could be of use in the testing of contemporary 
colored noise theory. As examples, data on the amplitude ratios are com- 
pared to the predictions of the conventional small-correlation-time theory, 
as recently improved by Fox, ~8) and to Hanggi's ansatz. (9) The advantage of 
this system is that the results depend only on the ratios of probability den- 
sities, so that the correlation-time-dependent prefactors which often appear 
in various forms in colored noise approximate theories cancel out, revealing 
the exponential behavior alone. This could be a considerable advantage, 
since it is often difficult or impossible to clearly distinguish between the 
influence of the prefactors and exponentials using numerical, matrix con- 
tinued fraction, or analog simulations. A vigorous discussion on the merits 
and accuracy of various colored noise approximate theories is currently in 
progress. 2 Finally, in Section 6 we summarize our results. 

See ref. 10 for a collection of reviews. See also refs. 8, 9, and 11. 
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2. T H E O R Y  

We consider the symmetric potential defined by Eq. ( la)  with e = 0  
and as shown in Fig. 2b. Following Landauer's notation, ~7t the left-hand 
well is located at A ( x = - 1 ) ,  the barrier at B ( x = 0 ) ,  the region of 
increased noise intensity between B and C ( x =  1/2), and the right-hand 
well at D (x = 1 ). 

It is necessary to first consider what happens at a temperature (or 
noise intensity) discontinuity. For stationary conditions the probability 
currents across the discontinuity at B, for example, can be written 
p ( B - )  v ( B - )  = p(B + ) v(B § ), where p is the probability density and v is the 
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Fig. 2, (a) A schematic diagram of the simulator, showing multipliers (x) summers (+ ) ,  
comparators (comp), and an and circuit (AND). (b) An example of the potential utilized in 
the simulator with the region of increased noise intensity BC shown in bold lines between 
x0 = 0 and xl = 1/2. 
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velocity of a particle in thermal equilibrium at temperature T just to the 
left of the discontinuity (B- )  or just to the right (B+). The velocity is 
v oc T 1/2, so that p ( B + ) / p ( B - ) =  (TL/TH) m, where T c is the (lower) tem- 
perature outside the region BC and TH is the (higher) temperature inside 
BC. We identify the temperature with the diffusion or noise intensity 
through Dn = I~kT, and since we consider only homogeneous media we take 
# = const = 1. The ratios are thus 

p( B + )/p( B -  ) = p( C )/p( C + ) = ( D .L /D . . )  ~/2 (3) 

Landauer then argues that the densities within the regions are given by 
the Boltzmann distribution exp[ -U(x ) /Dn] .  In addition to Eq. (3), the 
ratios are 

p(B )/p(A) = e x p [ -  (UB-- UA)/D.L] 

p(C )/p(B + ) = exp[ - (Uc - UB)/D.H] 

p( D )/p( C + ) = exp[ -- ( Up -- Uc)/DnL] 

These probabilities are then multiplied together, whereupon the ratios 
given by Eq. (3) cancel, and the result is 

p(D)/p(A ) = e x p [ - ( U  D - -  U A)/DnL ] exp[ -zJU(DnL - -  DnH)/DnL DnH ] (4) 

where AU= U c - U ~ .  Van Kampen (6) obtains the same result for the 
amplitude ratio at the wells, but he predicts for the ratio at the discon- 
tinuities 

p ( B  + ) /p (B  ) = p ( C  ) / p ( C  § ) = D ~  (5) 

instead of Eq. (3). In this work, we consider only the symmetric (~=0)  
potential. With UA = Up, Eq. (4) becomes 

p(D)/p(A) = exp[ - A U(DnL - -  DnH)/D.L D~H] (6) 

3. T H E  S I M U L A T O R  

Figure 2a shows a schematic diagram of the simulator of Eqs. (1) and 
(2). The design is straightforward and one which we have used before, (9'12) 
with the exception of the added system for generating g(x). This is shown 
by the two comparators, which continuously test the voltage on x and 
compare it to the preset values x0 and xl ,  which mark the boundaries of 
the region of increased noise intensity. Each time the trajectory crosses of 
the boundaries an output is applied to the AND gate shown. This gate, in 
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turn, and the adder which follows it, provide a suitable voltage Vg to a 
multiplier whose other input is the noise voltage 1,I,. The logic is arranged 
in such a way that Vg = 1 + A when Xo <~ x(t) <~ xi, and Vg = 1 when x(t) is 
outside this range, or Vg- g(x). The noise voltage ~(t) which drives the 
trajectory in the bistable potential is then defined by 

r x)= g(x) v.(t) (7) 

with g(x) defined by Eqs. (2). 
The noise voltage is supplied by a noise generator (Quan Tech model 

420) of wide but finite bandwidth, and is therefore necessarily colored. In 
order to define its correlation time z, precisely, it is passed through a 
linear, single-pole filter with transfer function H(~o)= 1/[1 + (e)r,)2]. The 
simulator scales time with the integrator time constant ri, so that the 
dimensionless correlation time is r = %/ri, and the correlation function of 
v. is 

(V,(t) V,(s) ) = (D,/~) e x p ( -  It-s[/z) (8) 

In the limit t ~ s, the noise intensity is defined by 

D,=~(V 2) (9) 

and the mean square noise voltage is a measured quantity. In this 
simulation vi = 100/~sec and the range of r ,  was 20-500 ~tsec (the range of v 
was then 0.20-5). For comparison with the white noise theories, however, 
we set the value z =0.20. Equations (2), (7), and (9) then give for the noise 
intensities 

D,L=V(V2,), D , , - -  z(V2)(1 §  2 (10) 

Figure 2b shows the potential of Eq. (la) with ~ = 0. The region BC of 
enhanced noise intensity is shown by the darkened segment which lies 
between xo = 0 and x 1 = 1/2. The potentials shown in Eq. (4) are then given 
by UA = -1/4 ,  U,  = 0, Uc = 7/64, and Uz)= 1/4, as determined by Eq. (la) 
with g=0.  The theoretical prediction for the amplitude ratio of the 
densities in the wells, Eq. (4), then becomes 

p(A) 64D.L (1 -FA~ (11) 

Using Eqs. (3) and (10), the predictions for the amplitude ratios at the 
discontinuities are 

p(B+)/p(B-)=p(C-)/p(C+)=I/(I+A) or 1 / ( I+A)  2 

(12a), (12b) 
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Fig. 3. Probability densities measured for values of A = 0, 0.5, 0.75, and 1.0 (top to bottom). 
The region of increased noise intensity BC is clearly evident for zt > O. 

The simulator is operated by first setting A = 0 and by adjusting e in 
order to obtain a symmetric density p. Checks on this symmetry 
adjustment were frequently made throughout the experiment. Figure 3 
shows an example set of measured densities for increasing values of A, com- 
mencing with the symmetric density shown at the top. These densities were 
assembled as averages from a sequence of time series x(t) of 4096 digitized 
points each. Typically 800 such time series were obtained, so that each 
density resulted from about 3.2 x 10 6 digitized points. For  each density, 
the amplitudes at the two peaks and at the high and low sides of each 
discontinuity were recorded. 

4. T H E  R E S U L T S  

Figure 4 shows the results of our measurements of the amplitude ratio 
in the wells as a function of z] for various values of D~. The solid lines are 
plots of Eq. (11) with DnL determined directly from ~ and measurements of 
( V ] ). There are no adjustable constants. The agreement between Eq. (11 ) 
and our measurements is excellent, but probably fortuitous, since the noise 
driving our simulator is actually colored with ~ =0.2, and the theory is 
valid only for white noise. The region of quasiwhite behavior of the 
simulator is ~ ~ 1, but in practice the usable dynamic range of the analog 
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Fig. 4. Plot of p(D)/p(A) versus A for values of DnL=0.20 (squares), 0.36 (triangles), 0.60 
(circles), and 1.6 (inverted triangles). The solid lines are plots of Eq. (11). The dashed lines 
estimate the systematic error in D,L. 

components imposes a lower limit of ~ ~ 0.t-0.2 for reliable operation 
without voltage clipping. Nevertheless the systematic behavior with D,L 
and A is convincing. 

The scatter in the data points shown on Fig. 4 is the result of both 
systematic and statistical errors. The ratio p(D)/p(A) is obtained from two 
large numbers, each with a certain statistical error. The statistical scatter 
was estimated from short-term repeatability measurements, and is shown 
as the example error bar on the D,L = 0.36 data. A more troublesome error 
stems from longer term variations in ( V ] )  due to very low frequency 
drifts, or systematic variations, in the noise generator. An attempt has been 
made to estimate the maximal effects of this error, and is shown by the 
dashed curves for D,L = 0.40 (upper curve) and D,L = 0.32 (lower curve). 

We have also measured the amplitudes of the density on both sides of 
the discontinuities in order to find the ratios p(B+)/p(B -) and 
p(C-)/p(C § ). Both refs. 6 and 7 make specific predictions for the behavior 
of these ratios with A as shown by Eqs. (12). In ref. 7 it is argued 
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additionally that whatever the functional dependence of the magnitude of 
the discontinuities on A, it can be expected to be the same for both discon- 
tinuities, and therefore will cancel in the result Eq. (11 ). Our measurements 
of these ratios are shown in Figs. 5a and 5b for a larger and a smaller noise 
intensity, respectively. The statistical errors on these data are relatively 
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Fig. 5. Plot of p(B+)/p(B ) (solid circles) and p(C )/p(C +) (open circles) for (a) 
DnL = 1.60 and (b) DnL = 0.36. The solid line is Eq. (12a) and the dashed line is Eq. (12b). 
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larger, as can be judged from the scatter, because the discontinuities occur 
at low amplitude on the density. The theoretical predictions are shown by 
the curves: ref. 7 and Eq. (12a) are the solid curves, and ref. 6 and Eq. (12b) 
are the dashed curves. 

We remark that both theories predict the equality of the magnitudes of 
the two discontinuities and their independence on D. Certainly to within 
the scatter of our data the measured magnitudes appear to be equal, as 
shown by the solid circles (discontinuity at B, x = 0) and the open circles 
(discontinuity at C, x = 1/2). Both sets of data seem to lie systematically 
higher than Eq. (12a), a trend which seems more evident for large noise 
intensity. Nevertheless, the systematics clearly favors Eq. (12a). 

Certainly these results come as no surprise to anyone, since exact 
solutions of white noise systems in the limit of large damping are very well 
known. The quasi-white-noise measurements shown here serve to indicate 
the accuracy of our simulator. 

5. C O L O R E D  N O I S E  

Nearly all colored noise approximate theories begin with an effective 
Fokker-Planck equation 

x, 0 02 
~ p (  t ) = ~ x  x [U'(x) p(x, t)~ +-~-~x2D(x) p(x, t) (13) 

wherein the diffusion D(x) - .  D(x, z) is intended to account approximately 
for the nonzero point-to-point correlations over x which are induced by a 
correlated driving force (the colored noise). [The case wherein D(x) is 
the result of an inhomogeneous medium has been recently examined by 
van Kampen/4)] The recent rapid growth of the theoretical colored noise 
industry (8-m has resulted in a variety of expressions for the "renormalized" 
diffusion D(x, ~). 

For the purpose of example we choose here only two: the improved 
"small-r approximation of Fox, (s'~3) which reduces to the often cited result 
of Sancho eta/. O4) in the limit of small r; and the ansatz due to Hanggi. (9) 
The Fox results are obtained from Eq. (13) with 

Dr(x, ~) - =  Do[-1 + rU"(x) ]  -1 (14) 

which results in the stationary density 

pv(x) = (1 - r + 3x2~) exp[ - UF(X, T)/D0] (1ha) 

with Uv(x, ~) for our potential given by 

Uv(x, ~) = -x2 /2  + x4/4 + ~(x2/2 - x 4 + x6/2) (15b) 
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Hanggi's results are obtained from Eq. (13) with 

OH{X , T ) : O 0 [ 1  --[- T(3 <X2 > -- 1 ) ] - 1  (16) 

where <x2> is an average over the trajectories, and this D(x) is specific to 
our potential. The density in this case is 

pn(x) = N e x p [ -  U(x)/Du(x, v)] (17) 

where U(x) is given by Eq. (la). 
As a zeroth-order approximation, we can simply substitute these 

results into the white noise formula for the r a t io  of the densities. This 
procedure is based on the observation that, even though this is a system 
with state~lependent noise, the space is separated into three regions, 
within each of which the noise intensity is constant. Nevertheless, simply to 
substitute colored noise densities for the white ones neglects the effects (if 
any) of correlations across the boundaries. Our only justification for this 
procedure is that our measurements of the amplitude ratios of the discon- 
tinuities, as discussed below, show no systematic behavior with ~ to within 
our (not so small) statistical errors. 

Using Eqs. (15)-(17) results in the predictions 

p{D)] = e x p [  1 1 ) (  7 9 ~ ' 7  
P(A)Jv ~ L  I ( I + A ) 2  -- 6 - 4 + I - ~ ) J  (18) 
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Fig. 6. The effect of colored noise shown by a plot of p(D)/p(A) versus �9 for A = 1. The open 
circles are for DnL = 1.6 and the solid triangles are for D, L = 0.40. The dashed curve is Eq. (18) 
and the solid curve is Eq. (19), both for DnL =0.40. 
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for the Fox theory; and 

70, :expE 1)1 
p(A)JH 64D~L 1 (1 +A)2 (19) 

for the Hanggi theory. We note that the T-dependent prefactors (if any) on 
the densities cancel out in this application. Further, these two expressions 
make qualitatively opposite predictions: Eq. (18) shows the ratio increasing 
with r, while Eq. (19) shows it decreasing. Both show the same A depen- 
dence (which is also the white noise zl dependence). 

Our measurements at fixed A = 1 are shown in Fig. 6, where the open 
circles are for the large D,L and the solid triangles are for the small D,L. 
Equation (18) is shown by the dashed curve and Eq. (19) by the solid 
curve. Both are plotted for D,L = 0.40, which is also the noise intensity for 
which the solid triangles were obtained. The lozenge on the vertical axis 
shows the white noise limit for all theories and illustrates the difficulty in 
comparing our simulations with white noise results: the quasi-white-noise 
simulation was done for r = 0.2 but does not extrapolate well to the lozenge 
shown on the axis at ~ = 0. 

Finally, measurements of the amplitude ratios at the discontinuities 
versus r for A = 1 are shown in Fig. 7. There is no discernible z dependence 
of these ratios. 
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6. S U M M A R Y  AND CONCLUSIONS 

We have measured stationary density amplitude ratios for a system 
with state-dependent noise applied in three discrete regions. The noise 
intensity was changed discontinuously at the boundries of the inner region. 
The measured results are in good agreement with the predictions of white 
noise calculations due to Landauer and van Kampen. In addition, we have 
repeated two sets of amplitude ratio measurements for a range of noise 
correlation times and compared the results to two current colored noise 
approximate theories. While neither approximation accurately describes the 
data, the a n s a t z  of ref. 9 is in better qualitative agreement. 
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